首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
航空   24篇
航天技术   7篇
航天   1篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2007年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1984年   3篇
  1982年   1篇
排序方式: 共有32条查询结果,搜索用时 843 毫秒
21.
The ESA mission Rosetta, launched on March 2nd, 2004, carries an instrument suite to the comet 67P/Churyumov-Gerasimenko. The COmetary Secondary Ion Mass Anaylzer – COSIMA – is one of three cometary dust analyzing instruments onboard Rosetta. COSIMA is based on the analytic measurement method of secondary ion mass spectrometry (SIMS). The experiment’s goal is in-situ analysis of the elemental composition (and isotopic composition of key elements) of cometary grains. The chemical characterization will include the main organic components, present homologous and functional groups, as well as the mineralogical and petrographical classification of the inorganic phases. All this analysis is closely related to the chemistry and history of the early solar system. COSIMA covers a mass range from 1 to 3500 amu with a mass resolution mm @ 50% of 2000 at mass 100 amu. Cometary dust is collected on special, metal covered, targets, which are handled by a target manipulation unit. Once exposed to the cometary dust environment, the collected dust grains are located on the target by a microscopic camera. A pulsed primary indium ion beam (among other entities) releases secondary ions from the dust grains. These ions, either positive or negative, are selected and accelerated by electrical fields and travel a well-defined distance through a drift tube and an ion reflector. A microsphere plate with dedicated amplifier is used to detect the ions. The arrival times of the ions are digitized, and the mass spectra of the secondary ions are calculated from these time-of-flight spectra. Through the instrument commissioning, COSIMA took the very first SIMS spectra of the targets in space. COSIMA will be the first instrument applying the SIMS technique in-situ to cometary grain analysis as Rosetta approaches the comet 67P/Churyumov-Gerasimenko, after a long journey of 10 years, in 2014.  相似文献   
22.
23.
An excellent review of the present understanding of the structure and formation of Jupiter's rings has recently been published by Burns et al. /1/. Therefore I will only summarize the basic ideas and open questions concerning the physical phenomena governing Jupiter's rings.  相似文献   
24.
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.  相似文献   
25.
26.
In situ observations of comet Halley yielded information on the nucleus and its environment. These measurements are related to properties of and processes at the nucleus by theoretical modelling and by simulation experiments in the laboratory. The objective of the KOSI (Kometensimulation) experiments is to study in detail processes which occur near the surface of ice-dust mixtures under irradiation by light, like heat transport into the sample, chemical fractionation of sample material, emission of gases, and others. The KOSI experiments are carried out at the large space simulation chamber in Köln. By providing an in-depth understanding of potential cometary processes the results from the KOSI experiments are relevant to any comet nucleus sample return mission.  相似文献   
27.
28.
Interstellar dust detected by the dust sensor onboard Ulysses was first identified after the Jupiter flyby when the spacecraft's trajectory changed dramatically (Grün et al., 1994). Here we report on two years of Ulysses post-Jupiter data covering the range of ecliptic latitudes from 0° to –54° and distances from 5.4 to 3.2 AU. We find that, over this time period, the flux of interstellar dust particles with a mean mass of 3·10–13 g stays nearly constant at about 1·10–4, m–2 s–1 ( sr)–1, with both ecliptic latitude and heliocentric distance.Also presented are 20 months of measurements from the identical dust sensor onboard the Galileo spacecraft which moved along an in-ecliptic orbit from 1.0 to 4.2 AU. From the impact direction and speeds of the measured dust particles we conclude that Galileo almost certainly sensed interstellar dust outside 2.8 AU; interstellar particles may also account for part of the flux seen between 1 and 2.8 AU.  相似文献   
29.
Dust is an important constituent of cometary emission; its analysis is one of the major objectives of ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko (C–G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C–G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C–G is given, because model parameters are derived from this data if possible. For quantities not yet measured for 67P/C–G, we use values obtained for other comets, e.g. concerning the optical and compositional properties of the dust grains. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C–G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that both the dust mass distribution and the time dependence of the dust production rate of 67P/C–G are those of a fairly typical comet.  相似文献   
30.
Observations of dust in the solar system and in the diffuse interstellar medium are summarized. New measurements of interstellar dust in the heliosphere extend our knowledge about micron-sized and bigger particles in the local interstellar medium. Interplanetary grains extend from submicron- to meter-sized meteoroids. The main destructive effect in the solar system are mutual collisions which provide an effective source for smaller particles. In the diffuse interstellar medium sputtering is believed to be the dominant destructive effect on submicron-sized grains. However, an effective supply mechanism for these grains is presently unknown. The dominant transport mechanisms in the solar system is the Poynting-Robertson effect which sweeps meteoroids bigger than about one micron in size towards the sun. Smaller particles are driven out of the solar system by radiation pressure and electromagnetic interaction with the interplanetary magnetic field. In the diffuse interstellar medium coupling of charged interstellar grains to large-scale magnetic fields seem to dominate frictional coupling of dust to the interstellar gas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号